INTEGRATED ANEMIA PREVENTION AND CONTROL

NATIONAL ANEMIA WORKING GROUP MEETING

February 4, 2016

OUTLINE

What is anemia and why is it a problem?

What are the causes of anemia?

What are effective interventions to address these causes?

What is the anemia situation in Sierra Leone?

WHAT IS ANEMIA?

- Red blood cells transport oxygen from the lungs to cells
- RBCs contain a protein called hemoglobin that carries the oxygen
- Anemia Greek word anaimía "want of blood"

CONSEQUENCES OF ANEMIA

 risk of disease & disability

economic productivity, and cost to society

birth weight,
preterm delivery
maternal mortality

- Vuality of life for adolescent
- • academic performance

- development of domains – physical, cognitive & socioemotional

CAUSES OF ANEMIA

Deficient intake: iron, vit. A, zinc, folate, vit. B¹²

Malaria: Destruction and impaired production RBC

Helminths: Internal bleeding (loss of iron)

Inflammation

- Hepcidin
- Redistribution of iron and Vit. A

Thalassemias, HbAS, HbSS, Hb-E, G6PD: ↑ Destruction & ↓ RBC production & ↓ lifespan

Cook, et al. 1994; Scott et al. 2007; Selhub et al. 2009; Ganz et al. 2011; George, et al. 2012; Pasricha et al. 2010; Suchdev et al. 2012

GENETIC DISORDERS AND ANEMIA

CAMBODIA-women (n=420)	
Genetic hemoglobin disorder	54%
Anemia With genetic disorder Without genetic disorder	30% 45% 11%
Low iron stores	2%

Karakochuk et al. 2015

Interventions for Anemia – strong evidence

- SUPPLEMENTATION
- FORTIFICATION
- DEWORMING
- MALARIA IPTP, LLIN,

INDOOR RESIDUAL SPRAYING; PROMPT DIAGNOSIS AND TREATMENT

Interventions for Anemia – indirect evidence

- WATER, SANITATION & HYGIENE
- DIETARY INTERVENTIONS
- INFANT & YOUNG CHILD FEEDING
- FAMILY PLANNING
- FEMALE EDUCATION

©HarvestPlus: A woman harvests high iron beans in Northern Province, Rwanda. Photo: HarvestPlus/Angoor Studios - See more at: http://bit.ly/1JVO3W0

INTEGRATION: COMBINED EFFECT OF IFA AND IPTP ON NEONTAL MORTALITY

Variable	n	Hazards ratio (HR)	HR (95% CI)	Ρ
FeFol and malaria prophylaxis				
No FeFol + no malaria prophylaxis (<i>ref</i>)	24803	+	1.00	" "
Any FeFol + no malaria prophylaxis	18225		0.90 (0.73, 1.12)	0.34
No FeFol + SP-IPTp	3990		1.08 (0.74, 1.57)	0.69
Any FeFol + SP-IPTp	16076		0.76 (0.58, 0.99)	0.04
No FeFoI + other malaria prophylaxis	4481		0.84 (0.60, 1.17)	0.29
Any FeFol + other malaria prophylaxis	32089		0.86 (0.70, 1.06)	0.16
	0.	25 0.5 1 2 4 Favors treatment	,	

Christiana R Titaley et al. Am J Clin Nutr 2010;92:235-243

WHA – ANEMIA TARGETS

- REDUCE ANEMIA GLOBALLY BY 50% AMONG WOMEN OR PRODUCTIVE AGE BY 2025
 - REQUIRES A 15% REDUCTION
 - 1995 2011 (4% REDUCTION WRA, 5 % REDUCTION PREGNANT WOMEN)

ONLY 5 OUT OF 185 COUNTRIES WITH ANEMIA DATA ARE ON COURSE TO REDUCE ANEMIA.

KEY LESSONS LEARNED FROM UGANDA

- INCREASE DISTRICT INVOLVEMENT
- STREAMLINE WITH OTHER COORDINATING BODIES
- INCREASED INTEGRATION ACROSS
 INTERVENTIONS

"we need move away from these conference rooms to the field where the people are"

ANEMIA IN WEST AFRICA

Data compiled using DHS STATcompiler at http://www.statcompiler.com/

Ministry of Health and Sanitation (Sierra Leone), UNICEF, Helen Keller International, and WHO. 2013 Sierra Leone Micronutrient Survey. Freetown, Sierra Leone; 2015.

PREVALENCE OF ANEMIA AND KEY RISK FACTORS IN SIERRA LEONE, NATIONALLY

PREVALENCE OF ANEMIA, ID AND IDA IN SIERRA LEONE CHILDREN, NATIONALLY

CONTEXT SPECIFIC CAUSES OF ANEMIA SHOULD DRIVE INTERVENTIONS

Causes

Malaria related-

Micronutrient deficiencies, stunting

Tropical enteropathy, nutrient malabsorption diarrhea

Blood loss

Interventions

MALARIA PREVENTION & TREATMENT

NUTRITION PROGRAMS

WATER TREATMENT & HYGIENE

DEWORMING

COVERAGE ANEMIA-RELATED INTERVENTIONS IN SIERRA LEONE, NATIONALLY

WHO RECOMMENDATIONS FOR MNP

WHERE?

ANEMIA >20%

WHO?

CHILDREN 6-23 MO

Guideline:

Use of multiple micronutrient powders for home fortification of foods consumed by infants and children 6–23 months of age

WHY?

REDUCE IRON DEFICIENCY AND ANEMIA

De-Regil et al. 2011

World Health Organization Review: Oral iron supplements for children in malaria-endemic areas

Comparison: I Iron versus placebo or no treatment

Outcome: I Clinical malaria (by anaemia at baseline)

Study or subgroup	log [Risk Ratio]	Risk Ratio	Weight	Risk Ratio
	(SE)	IV,Fixed,95% CI		IV,Fixed,95% CI
I Anaemia				
Adam 1997 (C)	0.401106 (0.19702878)		5.9 %	1.49 [1.02, 2.20]
Ayoya 2009	0.732368 (0.58467408)		0.7 %	2.08 [0.66, 6.54]
Desai 2003	-0.52742 (0.19357679)		6.1 %	0.59 [0.40, 0.86]
Fahmida 2007	0.313161 (0.7553618)		0.4 %	1.37 [0.31, 6.01]
Gebresellassie 1996	0.465092 (0.27861906)	+	2.9 %	1.59 [0.92, 2.75]
Massaga 2003	-0.1705 (0.14303878)		11.2 %	0.84 [0.64, 1.12]
Massaga 2003	0.054615 (0.23254496)	- _	4.2 %	1.06 [0.67, 1.67]
Smith 1989 (C)	0.473541 (0.48487584)		1.0 %	1.61 [0.62, 4.15]
Verhoef 2002	0.356675 (0.31150403)	—	2.4 %	1.43 [0.78, 2.63]
Verhoef 2002	0.04256 (0.24648012)	<u> </u>	3.8 %	1.04 [0.64, 1.69]
Subtotal (95% CI)		+	38.5 %	1.02 [0.88, 1.19]
Heterogeneity: Chi ² = 19.77, o	tf = 9 (P = 0.02); I ² =54%			
Test for overall effect: Z = 0.3	I (P = 0.76)			
Harvey 1989	-0.08004 (0.16178459)		8.7 %	0.92 [0.67, 1.27]
Lawless 1994	-0.04652 (0.14975946)		10.2 %	0.95 [0.71, 1.28]
Leenstra 2009	0.625938 (0.7978724)		0.4 %	1.87 [0.39, 8.93]
Menendez 1997	-0.06236 (0.12627568)		14.3 %	0.94 [0.73, 1.20]
Menendez 1997	-0.1779 (0.20514197)		5.4 %	0.84 [0.56, 1.25]
Richard 2006	0.044784 (0.10073627)	+	22.5 %	1.05 [0.86, 1.27]
Subtotal (95% CI)		+	61.5 %	0.97 [0.86, 1.09]
Heterogeneity: Chi ² = 1.92, df	F = 5 (P = 0.86); I ² =0.0%			
Test for overall effect: Z = 0.48	8 (P = 0.63)			
Total (95% CI)		•	100.0 %	0.99 [0.90, 1.09]
Heterogeneity: Chi ² = 21.98, o	$df = 15 (P = 0.11); I^2 = 32\%$			
Test for overall effect: Z = 0.18 (P = 0.85)				
Test for subgroup differences: (Chi* = 0.29, df = 1 (P = 0.59), l* =0.0%			
		0.2 0.5 1 2 5		

MNP SAFETY CONSIDERATIONS

Safety of iron: Pemba trial

Context matters

Tanzania	Ghana	
Trial halted because of increased hospitalizations and death in the groups supplemented with iron and zinc	No increased risk of malaria with bednet distribution and prompt diagnosis and treatment of a malaria	
Kenya	Cote d'Ivoire	
Increased pathogenic gut microbiota profile	Increased pathogenic gut microbiota profile	
South Africa	Pakistan	
No difference in gut microbiota profile	Increase risk for diarrhea	

Sazawal S et al. 2006, Zlotkin et al. 2013, Jaegg et al. 2014; Dostal et al. 2014; Zimmermann et al. 2010, Soofi et al. 2013

CAUSES OF ANEMIA – FUTURE DIRECTIONS

HIGH IRON GROUND WATER

→.51 (MASONFONYIA) TO 1.2 (GBANGIENE)

GENETICS

→UNDERWAY

REFERENCES...

- HOTEZ, P. J., BROOKER, S., BETHONY, J. M., BOTTAZZI, M. E., LOUKAS, A., & XIAO, S. (2004). HOOKWORM INFECTION. N ENGL J MED, 351(8), 799-807.
- HOTEZ, P. J., BUNDY, D. A. P., BEEGLE, K., BROOKER, S., DRAKE, L., DE SILVA, N., ET AL. (2006).
- KASSEBAUM, (2014) A SYSTEMATIC ANALYSIS OF GLOBAL ANEMIA BURDEN FROM 1990 TO 2010. BLOOD. 123: 615-624
- NGURE F., REID B., HUMPHREY, J., MBUYA M., PELTO, G. STOLTZFUS R. (2014) WATER, SANITATION, AND HYGIENE (WASH), ENVIRONMENTAL ENTEROPATHY, NUTRITION, AND EARLY CHILD DEVELOPMENT: MAKING THE LINKS. ANNAL OF THE NEW YORK ACADEMY OF SCIENCES. VOL 1308: 118-128
- PASRICHA, S. R., BLACK, J., MUTHAYYA, S., SHET, A., BHAT, V., NAGARAJ, S., ET AL. (2010). DETERMINANTS OF ANEMIA AMONG YOUNG CHILDREN IN RURAL INDIA. PEDIATRICS, 126(1), E140-149.
- SCOTT, J. (2007). NUTRITIONAL ANEMIA: B-VITAMINS. IN M. ZIMMERMANN (ED.), THE GUIDEBOOK OF NUTRITIONAL ANEMIA. BASEL, SWITZERLAND: SIGHT AND LIFE PRESS.
- SELHUB, J., MORRIS, M. S., JACQUES, P. F., & ROSENBERG, I. H. (2009). FOLATE-VITAMIN B-12 INTERACTION IN RELATION TO COGNITIVE IMPAIRMENT, ANEMIA, AND BIOCHEMICAL INDICATORS OF VITAMIN B-12 DEFICIENCY. AM J CLIN NUTR, 89(2), 702S-706S.
- STOLTZFUS, R. J. (2003). IRON DEFICIENCY: GLOBAL PREVALENCE AND CONSEQUENCES. FOOD NUTR BULL, 24(4 SUPPL), S99-103.
- SUCHDEV P. RUTH, L. EARLEY, M., MACHARIA, A. WILLIAMS, T. (2012) THE BURDEN AND CONSEQUENCES OF INHERITED BLOOD DISORDERS AMONG YOUNG CHILDREN IN WESTERN KENYA. MATERNAL AND CHILD NUTRITION
- WHO (2011A). HAEMOGLOBIN CONCENTRATIONS FOR THE DIAGNOSIS OF ANAEMIA AND ASSESSMENT OF SEVERITY. WORLD HEALTH ORGANIZATION, (WHO/NMH/NHD/MNM/11.1) AVAILABLE: HTTP://WWW.WHO.INT/VMNIS/INDICATORS/HAEMOGLOBIN.PDF [DECEMBER 2011]: GENEVA.

REFERENCES

- ASSIS, A. M., BARRETO, M. L., GOMES, G. S., PRADO MDA, S., SANTOS, N. S., SANTOS, L. M., ET AL. (2004). CHILDHOOD ANEMIA PREVALENCE AND ASSOCIATED FACTORS IN SALVADOR, BAHIA, BRAZIL. CAD SAUDE PUBLICA, 20(6), 1633-1641.
- BALARAJAN, Y., RAMAKRISHNAN, U., OZALTIN, E., SHANKAR, A. H., & SUBRAMANIAN, S. V. (2011). ANAEMIA IN LOW-INCOME AND MIDDLE-INCOME COUNTRIES. LANCET, 378(9809), 2123-2135.
- BENOIST B, MCLEAN E, COGSWELL M, EGLI I, & D., W. (2008). WORLDWIDE PREVALENCE OF ANAEMIA 1993–2005 WHO GLOBAL DATABASE ON ANAEMIA. GENEVA, SWITZERLAND: WORLD HEALTH ORGANIZATION.
- BLACK ET AL. (2013). MATERNAL AND CHILD UNDERNUTRITION AND OVERWEIGHT IN LOW-INCOME AND MIDDLE-INCOME COUNTRIES. THE LANCET, VOL 382, ISSUE 9890, PAGES 427 451, 3
- COOK, J. D., SKIKNE, B. S., & BAYNES, R. D. (1994). IRON DEFICIENCY: THE GLOBAL PERSPECTIVE. ADV EXP MED BIOL, 356, 219-228.
- CHRISTIAN P., STEWART C, KHATRY S.(2009) ANTENATAL AND POSTNATAL IRON SUPPLEMENTATION AND CHILDHOOD MORTALITY IN RURAL NEPAL: A PROSPECTIVE FOLLOW-UP IN A RANDOMIZED, CONTROLLED COMMUNITY TRIAL. AMERICAN JOURNAL OF EPIDEMIOLOGY. 170(9): 1127-1136.
- EZEAMAMA, A. E., FRIEDMAN, J. F., OLVEDA, R. M., ACOSTA, L. P., KURTIS, J. D., MOR, V., ET AL. (2005). FUNCTIONAL SIGNIFICANCE OF LOW-INTENSITY POLYPARASITE HELMINTH INFECTIONS IN ANEMIA. J INFECT DIS, 192(12), 2160-2170.
- GANZ, T., NEMETH E., (2009). IRON SEQUESTRATION AND ANEMIA OF INFLAMMATION. SEMIN HEMATOL, OCT;46(4):387-93.
- GEORGE, J., YIANNAKIS, M., MAIN, B., DEVENISH, R., ANDERSON, C., AN, U. S., ET AL. (2012). GENETIC HEMOGLOBIN DISORDERS, INFECTION, AND DEFICIENCIES OF IRON AND VITAMIN A DETERMINE ANEMIA IN YOUNG CAMBODIAN CHILDREN. J NUTR, 142(4), 781-787.